Space-Time Equations for Non-Unimodular Mappings
نویسندگان
چکیده
منابع مشابه
Space-Time Equations for Non-Unimodular Mappings
Abstract. The class of systems of uniform recurrence equations (UREs) is closed under unimodular transformations. As a result, every systolic array described by a unimodular mapping can be specified by a system of space-time UREs, in which the time and space coordinates are made explicit. As non-unimodular mappings are frequently used in systolic designs, this paper presents a method that deriv...
متن کاملSpace versus Time: Unimodular versus Non-Unimodular Projective Ring Geometries?
Finite projective (lattice) geometries defined over rings instead of fields have recently been recognized to be of great importance for quantum information theory. We believe that there is much more potential hidden in these geometries to be unleashed for physics. There exist specific rings over which the projective spaces feature two principally distinct kinds of basic constituents (points and...
متن کاملFixed point theorem for non-self mappings and its applications in the modular space
In this paper, based on [A. Razani, V. Rako$check{c}$evi$acute{c}$ and Z. Goodarzi, Nonself mappings in modular spaces and common fixed point theorems, Cent. Eur. J. Math. 2 (2010) 357-366.] a fixed point theorem for non-self contraction mapping $T$ in the modular space $X_rho$ is presented. Moreover, we study a new version of Krasnoseleskii's fixed point theorem for $S+T$, where $T$ is a cont...
متن کاملSolving nonlinear space-time fractional differential equations via ansatz method
In this paper, the fractional partial differential equations are defined by modified Riemann-Liouville fractional derivative. With the help of fractional derivative and fractional complex transform, these equations can be converted into the nonlinear ordinary differential equations. By using solitay wave ansatz method, we find exact analytical solutions of the space-time fractional Zakharov Kuz...
متن کاملViscosity approximation methods for W-mappings in Hilbert space
We suggest a explicit viscosity iterative algorithm for nding a common elementof the set of common xed points for W-mappings which solves somevariational inequality. Also, we prove a strong convergence theorem with somecontrol conditions. Finally, we apply our results to solve the equilibrium problems.Finally, examples and numerical results are also given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Mathematics
سال: 2002
ISSN: 0020-7160,1029-0265
DOI: 10.1080/00207160210953